一、简介
男,博士,副教授,硕士生导师。主要从事区域气候模拟、土地利用/覆盖变化的区域气候效应、风速/风能资源评估与预测等领域研究。云南省优青、云南省“兴滇英才支持计划”—青年人才、beat365官方网站“东陆人才计划”—东陆青年学者。截止目前,主持国家自然科学基金、中国科学院特别研究资助、中国博士后科学基金等项目。参加过国家重点基础研究发展规划项目3项,国家自然科学基金项目3项。发表学术论文30余篇,其中第一/通讯作者SCI论文16篇,其他合作论文20余篇。申请发明专利3项。发表SCI论文Google Scholar总引700余次,作为主要完成人发表的5篇论文成为联合国政府间气候变化专门委员会第六次评估报告的支撑材料。多篇论文的研究成果被Nature Reviews Earth & Environment, Nature Climate Change等国际期刊引用或评述。博士论文获评云南省优秀博士学位论文。
二、研究方向
区域气候模拟与应用、风速/风能资源评估与预测等
三、教育经历
[1] 2015.09~2019.07:beat365官方网站、气象学、博士、导师:吴涧(教授)
[2] 2012.09~2015.07:beat365官方网站、气象学、硕士、导师:吴涧(教授)
[3] 2008.09~2012.07:beat365官方网站、大气科学、学士、导师:吴涧(教授)
四、学术与工作经历
[1] 2022.03~至今:beat365官方网站,beat365官方网站,副教授
[2] 2019.07~2021.12:中国科学院大气物理研究所,博士后,合作导师:符淙斌(院士)/赵得明(研究员)
[3] 2016.07~2019.05:中国科学院大气物理研究所,学术访问
[4] 2023.03~2023.08:中国科学院大气物理研究所,学术访问
五、主持和参与科研项目
主持项目
[1] 云南省优青项目:中国陆域近地面风速年代际变化的物理机制研究(202401AW070008),2024.03~2027.02,30.0万,在研
[2] 中国电建集团贵阳勘测设计研究院有限公司科技项目:基于人工智能和大数据的风功率密度预测模型研究(QG/GYY-A3-MST-04-2021/5),2023.06~2024.12,35.0万元,在研
[3] 云南省基础研究专项-面上项目:中国陆域近地面风速区域非同步性变化的检测(202301AT070199),2023.06~2026.5,10.0万元,在研
[4] beat365官方网站东陆青年学者引进人才项目:中国陆域近地面风速统计降尺度预估,2023.01~2025.12,100.0万元,在研
[5] 国家自然科学基金-青年项目:中国陆域近地面风速多时间尺度变化的检测归因研究(42005023),2021.01~2023.12,24.0万,结题
[6] 中国科学院特别研究资助项目:我国陆域近地面风速未来时空演变特征及归因分析,2019.07~2021.12,80.0万,结题
[7] 中国博士后科学基金-面上项目:大尺度环流场改变影响我国陆域近地面风速的机理分析(2019M660761),2020.01~2021.12,8.0万,结题
[8] 云南省教育厅科学研究基金项目:土地利用/覆盖变化影响近地面风速变化的分析(2017YJS106),2017.01~2018.12,0.5万,结题
参与项目
[9] 国家重点研发计划:“共享开放、自主可控的区域地球系统模式多元耦合及人类活动影响的反馈与预估”,第四课题:东亚气候-环境-生态系统的协同演变及未来人居环境预估(2023YFF0805504),2023.12~2028.11,558万元,在研,项目骨干,参与
[10] 国家自然科学基金—国际(地区)合作与交流项目:城市绿地缓解城市热岛效应:北京和华沙的比较研究(42361134582),150万,2024.01~2026.12,项目骨干,参与
[11] 国家自然科学基金—联合基金:三峡水库的区域气候效应及其水文循环响应机制研究(U2240218),2022.01~2025.12,260万元,在研,项目骨干,参与
[12] 国家重点研发计划:高分辨率区域地球系统模式的研发及应用 第四课题:区域地球系统模式与数据服务平台建设(2018YFA0606004),2018.05~2023.05,679.0万,结题,参与
[13] 国家重点研发计划:气候多尺度变化与年代际重大事件的归因及预估,第三课题:东亚区域年代际气候变化和重大事件的检测与归因(2016YFA0600403),2016.07~2021.06,630.0万,结题,参与
六、发表论文
[1] Zha JL, Chuan T, Wu J*, Zhao DM, Luo M, Feng JM, Fan WX, Shen C & Jiang HP (2024) Attribution of terrestrial near-surface wind speed changes across China at a centennial scale. Geophysical Research Letters, 51, e2024GL108241. https://doi.org/10.1029/2024GL108241.
[2] Zha JL, Shen C, Wu J, Zhao DM*, Fan WX, Jiang HP, & Zhao TB (2023) Evaluation and Projection of Changes in Daily Maximum Wind Speed over China based on CMIP6. Journal of Climate, 36, 1503-1520. https://doi.org/10.1175/JCLI-D-22-0193.1
[3] Zha JL, Shen C, Wu J, Zhao DM, Fan WX*, Jiang HP, Azorin-Molina C, & Chen DL (2022) Effects of Northern Hemisphere Annular Mode on Terrestrial Near-Surface wind speed Changes over Eastern China from 1979 to 2017. Advances in Climate Change Research, 13, 875-883. https://doi.org/10.1016/j.accre.2022.10.005
[4] Zha JL, Shen C, Zhao DM*, Feng JM, Xu ZF, Wu J, Fan WX, Luo M, & Zhang LY (2022) Contributions of external forcing and internal climate variability to changes in the summer surface air temperature over East Asia. Journal of Climate, 36, 5013-5032. https://doi.org/10.1175/JCLI-D-21-0577.1
[5] Shen C, Zha JL*, Wu J, Zhao DM, Fan WX, & Azorin-Molina C (2022) Does CRA-40 outperform other reanalysis products in evaluating near-surface wind speed changes over land in China? Atmospheric Research, 266, 105948. https://doi.org/10.1016/j.atmosres.2021.105948
[6] Zha JL, Shen C, Wu J, Zhao DM*, Li ZB, & Fan WX (2021) Projected Changes in Global Terrestrial Near-Surface Wind Speed in 1.5-4.0 ℃ Global Warming Levels. Environmental Research Letters, 16, 114016. https://doi.org/10.1088/1748-9326/ac2fdd
[7] Zha JL, Shen C, Zhao DM, Wu J*, & Fan WX (2021) Slowdown and reversal of terrestrial near-surface wind speed and its future changes over eastern China. Environmental Research Letters, 16, 034028. https://doi.org/10.1088/1748-9326/abe2cd
[8] Zha JL, Zhao DM*, Wu J, & Shen C (2021) Terrestrial near-surface wind speed variations in China: research progress and prospects. Journal of Meteorological Research, 35, 537-556. https://doi.org/10.1007/s13351-021-0143-x
[9] Shen C, Zha JL*, Zhao DM, & Wu J (2021) Centennial-scale variability in terrestrial near-surface wind speed over China. Journal of Climate, 34, 5829-5846. https://doi.org/10.1175/JCLI-D-20-0436.s1
[10] Shen C, Zha JL*, Zhao DM, Wu J, Fan WX, Yang MX, & Li ZB (2021) Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6. Environmental Research Letters, 16, 084039. https://doi.org/10.1088/1748-9326/ac1378
[11] Zha JL, Wu J*, Zhao DM, & Fan WX (2020) Future projections of the near-surface wind speed over eastern China based on CMIP5 datasets. Climate Dynamics, 54, 2361-2385. https://doi.org/10.1007/s00382-020-05118-4
[12] Zha JL, Zhao DM*, & Wu J (2019) Numerical simulation of the effects of land use and cover change on the near-surface wind speed over Eastern China. Climate Dynamics, 53, 1783-1803. https://doi.org/10.1007/s00382-019-04737-w
[13] Zha JL, Wu J*, & Zhao DM (2019) A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes. Theoretical and Applied Climatology, 136, 119-134. https://doi.org/10.1007/s00704-018-2471-z
[14] Zha JL, Wu J*, & Zhao DM (2017) Changes of the probabilities in different ranges of near-surface wind speed in China during the period for 1970-2011. Journal of Wind Engineering & Industrial Aerodynamics, 169, 156-167. https://doi.org/10.1016/j.jweia.2017.07.019
[15] Zha JL, Wu J*, & Zhao DM (2017) Effects of land use and cover change on the near-surface wind speed over China in the last 30 years. Progress in Physical Geography-Earth and Environment, 41, 46-67. https://doi.org/10.1177/0309133316663097
[16] Zha JL, Wu J*, & Zhao DM (2016) Changes of probabilities in different wind grades induced by land use and cover change in Eastern China Plain during 1980-2011. Atmospheric Science Letters, 17, 264-269. https://doi.org/10.1002/asl.653
[17] Wu J*, Zha JL, & Zhao DM (2018) Changes in terrestrial near-surface wind speed and their possible causes: an overview. Climate Dynamics, 51, 2039-2078. https://doi.org/10.1007/s00382-017-3997-y
[18] Wu J*, Zha JL, & Zhao DM (2018) Effects of surface friction and turbulent mixing on long-term changes in the near-surface wind speed over the Eastern China Plain from 1981 to 2010. Climate Dynamics, 51, 2285-2299. https://doi.org/10.1007/s00382-017-4012-3
[19] Wu J*, Zha JL, & Zhao DM (2018) Changes of wind speed at different heights over Eastern China during 1980-2011. International Journal of Climatology, 38, 4476-4495. https://doi.org/10.1002/joc.5681
[20] Wu J*, Zha JL, & Zhao DM (2017) Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. Climate Dynamics, 48, 131-149. https://doi.org/10.1007/s00382-016-3065-z
[21] Wu J*, Zha JL, & Zhao DM (2016) Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980-2011. Climate Dynamics, 46, 847-863. https://doi.org/10.1007/s00382-015-2616-z
[22] Chuan T, Wu J*, Zha JL, Zhao DM, et al (2024) Asynchronous changes in terrestrial near-surface wind speed among regions across China from 1973 to 2017. Atmospheric Research, 300, 107220, https://doi.org/j.atmosres.2024.107220
[23] Liu WL, Yang S, Chen DL, Zha JL, Zhang GF, Zhang ZT, Zhang TT, Xu LL, Hu XM, and Deng KQ (2024) Rapid acceleration of Arctic near-surface wind speed in a warming climate. Geophysical Research Letters, https://doi.org/10.1029/2024GL109385
[24] Deng KQ, Yang S, Liu WL, Li H, Chen DL, Lian T, Zhang GF, Zha JL, & Shen C (2024) The offshore wind speed changes in China: an insight into CMIP6 model simulation and future projections. Climate Dynamics, https://doi.org/10.1007/s00382-023-07066-1
[25] Andres-Martin M, Azorin-Molina C, Shen C, Fernandez-Alvarez J, Gimeno L, Vicente-Serrano S, & Zha JL (2023) Uncertainty in surface wind speed projections over the Iberian Peninsula: CMIP6 GCMs versus a WRF-RCM. Annals of the New York Academy of Sciences, https://doi.org/10.1111/nyas.15063
[26] Shen C, Zha JL, Chen DL, et al (2022) Evaluation of global terrestrial near-surface wind speed simulated by CMIP6 models and their future projections. Annuals of the New York Academy of Sciences, 1518, 249-263, https://doi.org/10.1111/nyas.14910
[27] Wang J, Feng JM, Yan ZW, & Zha JL (2020) Urbanization impact on regional wind stilling: A modeling study in the Beijing-Tianjin-Hebei region of China. Journal of Geophysical Research: Atmospheres, 125, 20, https://doi.org/10.1029/2020JD033132
其它研究领域论文:
[28] Zhao DM, Zha JL, & Wu J (2023) Emphasizing the land use-cloud-radiation feedback in detecting climate effects of land use and land cover changes. Climate Dynamics, https://doi.org/10.1007/s00382-023-06959-5
[29] Jiang HP, Guo HD, Sun ZC, Yan XF, Zha JL, Zhang HL, & Li SJ (2023) Urban-rural disparities of carbon storage dynamics in China’s human settlements driven by population and economic growth. Science of the Total Environment, 87, 162092. https://doi.org/10.1016/j.scitotenv.2023.162092.
[30] Zhang CW, Wu J, Fan WX, Zhao JC, Yang QD, Zha JL, & Zhao DM (2022) A Method of Inversing Dynamic Aerosol Extinction-to-backscattering Ratio based on Lidar Echo Signal and Ground Aerosol Extinction Coefficient. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3152902
[31] Zhao DM, Zha JL, & Wu J (2021) Changes in rainfall of various intensity grades due to urbanization land-use over Shenzhen, China. Climate Dynamics, 56, 2509-2530. https://doi.org/10.1007/s00382-020-05601-y
[32] Zhao DM, Zha JL, & Wu J (2020) Changes in rainfall at various grades due to urban surface expansion over China. Tellus A: Dynamic Meteorology & Oceanography, 72, 1-21. https://doi.org/10.1080/16000870.2020.1745532
[33] Wu J*, Zhang PW, Zha JL, Zhao DM, & Lu WX (2019) Evaluating the long-term changes in temperature over the low-latitudes plateau in China using a statistical downscaling method. Climate Dynamics, 52, 4269-4292. https://doi.org/10.1007/s00382-018-4379-9
[34] Wu J, Zhang LY, Gao YC, Zhao DM, & Zha JL (2017) Impacts of cloud cover on long-term changes in light rain. International Journal of Climatology, 37, 4409-4416. https://doi.org/10.1002/joc.5095
七、专利
[1] 查进林, 陆雯茜, 张浩, 吕艳军, 张银量, 张鹏伟 (2024) 一种基于高分辨率风速模型的风速预测方法. 发明专利,申请号:2024101381451
[2] 张银量, 查进林 (2023) 一种单轴对转型垂直轴风机. 发明专利,申请号:2023103134789.
[3] 张鹏伟, 张浩, 查进林, 吴莅, 张泽皓, 关灿星, 陆雯茜 (2023) 一种基于深度学习网络的智能识别算法. 发明专利, 申请号:202311208058.0.
八、获奖情况
[1] 云南省兴滇英才支持计划—青年人才
[2] 宝钢教育奖/宝钢教育基金会
[3] 云南省优秀博士学位论文:《中国东部地区陆域近地面风速时空演变特征及机理分析》
[4] 云南省优秀硕士学位论文:《中国地区土地利用/覆盖变化影响近地面风速的分析》
九、讲授课程
[1] 研究生课程:《高等大气动力学》
[2] 本科生课程:《大气物理学》、《大气科学概论》
十、学术报告
(1)2023年云南省气象学术年会、《陆域近地面风速变化规律及原因分析》、中国—普洱、2023.12.13~2023.12.15、特邀报告
(2)首届全国大气边界层论坛、《土地利用/覆盖类型改变对中国陆域近地面风速变化的影响研究》、中国—雄安、2023.10.27~2023.10.29、邀请报告